

1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake
- 7. Lake biogeochemistry nutrients, phytoplankton

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake
- 7. Lake Biogeochemistry nutrients, phytoplankton
- 8. USGS collaboration to measure a surrogate for mercury

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake
- 7. Lake Biogeochemistry nutrients, phytoplankton
- 8. USGS collaboration to measure a surrogate for mercury
- 9. Public data portal

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake
- 7. Lake Biogeochemistry nutrients, phytoplankton
- 8. USGS collaboration to measure a surrogate for mercury
- 9. Public data portal
- 10. Numerical Modeling Calibration and simulation of particle transport

- 1. Prediction tool for low levels of dissolved oxygen (hypoxia) at Clear Lake
- 2. Two rounds of nutrient flux measurements from the sediments
- 3. Collaboration with the SWRCB on tailoring HAB RS tool for Clear Lake
- 4. NASA Fellowship for the detection of cyanobacteria in Clear Lake
- 5. Impact of hypoxia on fish habitat in Clear Lake
- 6. High-resolution data for streams, meteorology, and lake
- 7. Lake Biogeochemistry nutrients, phytoplankton
- 8. USGS collaboration to measure a surrogate for mercury
- 9. Public data portal
- 10. Numerical Modeling Calibration and simulation of particle transport
- 11. TERC welcomes a junior limnologist to the Clear Lake team

UC Davis TERC Next Steps 2021

- 1. Continue the Monitoring, Modeling, Collaborations and Public Outreach initiated
- 2. New cyanobacterial studies with NASA
- 3. 3-D Water Quality Modeling and Restoration Scenario Testing
- 4. Link 3-D model to mercury model (with USGS subject to funding)
- 5. Watershed Modeling (with USGS subject to funding)
- 6. Bathymetric survey of Clear Lake (subject to funding)
- 7. Commence Real-Time Predictive Modeling and Warning System of Locations of HABs
- 8. In the absence of funding, decommissioning of all monitoring stations will commence in May 2021

UC Davis TERC Team

Geoffrey Schladow	Principal Investigator
Steven Sadro	Principal Investigator
Alex Forrest	Principal Investigator
Alicia Cortes	Research Scientist
Anne Liston	TERC Lab Manager
Tina Hammell	UC Davis Lab Manager
Steven Sesma	Lab Chemist
Nick Framsted	Graduate Student Researcher
Samantha Sharp	Graduate Student Researcher
Drew Stang	Graduate Student Researcher
Micah Swann	Graduate Student Researcher
Shohei Watanabe	Data Manager
Lidia Tanaka	Project Scientist (Phycologist)
Goloka Sahoo	Project Scientist (Hydrology)
Katie Senft	Research Associate (scuba & field)
Brandon Berry	Research Associate (scuba & field)
Ruth Thirkill	Graduate Student Researcher
Carmen Woods	Project administration
Lindsay Vaughan	Technical Staff

